End-to-end Graph Learning

Lieferzeit: Lieferbar innerhalb 14 Tagen

39,90 

Using Canonization

ISBN: 6202224177
ISBN 13: 9786202224178
Autor: Yamen, Emre
Verlag: AV Akademikerverlag
Umfang: 52 S.
Erscheinungsdatum: 07.06.2019
Auflage: 1/2019
Format: 0.4 x 22 x 15
Gewicht: 96 g
Produktform: Kartoniert
Einband: Kartoniert
Artikelnummer: 7661240 Kategorie:

Beschreibung

Many relationships among data in several areas (such as computer vision, molecular chemistry and pattern recognition) can be represented by graphs. In the machine learning setting, it is an important learning task to classify graph-structural data correctly. Typically, the established techniques for this setting proceed via graph kernels and neural-network classification. In this work, we explore end-to-end learning for graphs: the objective is to operate on the graph representations directly. The key idea of our approach is to use standard tools for graph canonization. We test the performance of this approach on several datasets arising from bioinformatics. In general, we find that the graph canonization, as such, does not improve the accuracy of the classification. A possible reason for this behavior is that the neural network ends up overfitting to the given adjacency matrix representation.

Autorenporträt

Emre Yamen, studied Bachelor of Science Informatics at RWTH Aachen University. Master Student in Informatics and working on Machine Learning.

Herstellerkennzeichnung:


BoD - Books on Demand
In de Tarpen 42
22848 Norderstedt
DE

E-Mail: info@bod.de

Das könnte Ihnen auch gefallen …