Atmospheric Pressure Dry Nanotexturing for Crystalline Silicon PERC Solar Cells.

Lieferzeit: Lieferbar innerhalb 14 Tagen

81,00 

Solar Energy and Systems Research

ISBN: 3839618797
ISBN 13: 9783839618790
Autor: Ridoy, Ahmed Ismail
Herausgeber: Fraunhofer ISE Freiburg/Brsg
Verlag: Fraunhofer IRB Verlag
Umfang: 187 S., num., col. illus. and tab.
Erscheinungsdatum: 02.02.2023
Auflage: 1/2023
Produktform: Kartoniert
Einband: KT
Artikelnummer: 8492651 Kategorie:

Beschreibung

The state-of-the-art industrial fabrication of silicon solar cells requires significant handling of wet processes and large amounts of wet chemicals. On the other hand, dry etching processes mostly require plasma and vacuum sources as well as use of process gases with high global warming potentials (GWP). In this work, an alternative plasma-free and mask-less dry etching technique of single-sided in nature is investigated. This novel dry etch process uses fluorine (F2), a low to zero GWP gas as etchant, diluted at atmospheric pressure condition to facilitate nanoscale texture of monocrystalline silicon (mono-Si). The etched surface morphology is optimized in terms of surface roughness or enlargement and surface reflection followed by the optimization of phosphorus oxychloride (POCl3) based n-type emitter diffusion and front surface passivation. Such optimization enables improved emitter homogeneity with minimum standard deviation of 3% and front passivation with just silicon nitride (SiNx) by plasma-enhanced chemical vapor deposition. Altogether this optimized nanotexture-emitter combination is integrated into the inline fabrication of the passivated emitter and rear solar cell or PERC-architecture allowing improved energy conversion and increased cell efficiency up to an absolute 0.6%.

Das könnte Ihnen auch gefallen …