Optical Metamaterials by Block Copolymer Self-Assembly

Lieferzeit: Lieferbar innerhalb 14 Tagen

106,99 

Springer Theses

ISBN: 3319053310
ISBN 13: 9783319053318
Autor: Salvatore, Stefano
Verlag: Springer Verlag GmbH
Umfang: x, 83 S., 39 s/w Illustr., 26 farbige Illustr., 83 p. 65 illus., 26 illus. in color.
Erscheinungsdatum: 25.07.2014
Auflage: 1/2014
Produktform: Gebunden/Hardback
Einband: Gebunden

Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nanometric features.This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self-assembly.  This  approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.

Artikelnummer: 6218456 Kategorie:

Beschreibung

Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nano metric features.This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self assembly. This approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.

Autorenporträt

Stefano Salvatore completed his bachelor and master degrees in Materials Engineering at Politecnico di Milano in 2008. He worked on Nanotechnology in the industry sector with Imec (Belgium) and NTT (Japan) before starting his PhD at the University of Cambridge. Here he has took part in the Nano Doctoral Training Centre programme and completed his PhD in Physics in 2013. He is currently working as Process Engineer at Intel Corporation in Ireland.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …