Iterative Learning Control

Lieferzeit: Lieferbar innerhalb 14 Tagen

160,49 

Robustness and Monotonic Convergence for Interval Systems, Communications and Control Engineering

ISBN: 1849966583
ISBN 13: 9781849966580
Autor: Ahn, Hyo-Sung/Moore, Kevin L/Chen, YangQuan
Verlag: Springer Verlag GmbH
Umfang: xviii, 230 S., 32 s/w Illustr., 4 farbige Illustr., 230 p. 36 illus., 4 illus. in color.
Erscheinungsdatum: 19.10.2010
Auflage: 1/2007
Produktform: Kartoniert
Einband: KT

This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. Two key problems with the fundamentals of iterative learning control (ILC) design as treated by existing work are: first, many ILC design strategies assume nominal knowledge of the system to be controlled and; second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergence is often essential. Iterative Learning Control takes account of the recently-developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. Topics include: Use of a lifting technique to convert the twodimensional ILC system, which has dynamics in both the time and iteration domains, into the supervector framework, which yields a onedimensional system, with dynamics only in the iteration domain. Development of iterationdomain uncertainty models in the supervector framework. ILC design for monotonic convergence when the plant is subject to parametric interval uncertainty in its Markov matrix. An algebraic Hinfinity design methodology for ILC design when the plant is subject to iterationdomain frequency uncertainty. Development of Kalmanfilterbased ILC algorithms when the plant is subject to iterationdomain stochastic uncertainties. Analytical determination of the baseline error of ILC algorithms. Solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix. Iterative Learning Control will be of great interest to academic researchers in control theory and to industrial control engineers working in robotics-oriented manufacturing and batch-processing-based industries. Graduate students of intelligent control will also find this volume instructive.

Artikelnummer: 1520209 Kategorie:

Beschreibung

This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.

Inhaltsverzeichnis

Part I: Iterative Learning Control Overview.- Introduction.- An Overview of the ILC Literature.- The Super-vector Approach.- Part II: Robust Interval Iterative Learning Control.- Robust Interval Iterative Learning Control: Analysis.- Schur Stability Radius of Interval Iterative Learning Control.- Iterative Learning Control Design Based on Interval Model Conversion.- Part III: Iterative Learning Control: Iteration-domain Robustness.- Robust Iterative Learning Control: H-infinity Approach.- Robust Iterative Learning Control: Stochastic Approaches.- Conclusions.- Appendices: Taxonomy of Iterative Learning Control Literature; Maximum Singular Value of an Interval Matrix; Robust Stability of Interval Polynomial Matrices; Power of an Interval Matrix.

Autorenporträt

Hyo-Sung Ahn has research interests in the areas of robust iterative learning control, periodic adaptive learning control, networked control systems, neural networks, mobile robotics, navigation, biomechatronics, and aerospace engineering. He was research engineer in Space Development and Research Center, Korea Aerospace Indusstries LTD, Korea, and Upper Midwest Aerospace Consortium, USA. He received the M.S. degree from the University of North Dakota in Aerospace Engineering and the Ph.D. in Electrical Engineering from Utah State University. Dr. Ahn, with his co-authors, has been the primary developer of the ideas in the monograph and has a deep understanding of the design of iterative learning control systems, especially as regards robustness. Professor Moore is the G.A. Dobelman Distinguished Chair and Professor of Engineering in the Division of Engineering at the Colorado School of Mines. He received the B.S. and M.S. degrees in electrical engineering from Louisiana State University and the University of Southern California, respectively. He received the Ph.D. in electrical engineering, with an emphasis in control theory, from Texas A&M University. Most recently he was a senior scientist at Johns Hopkins University's Applied Physics Laboratory, where he worked in the area of unattended air vehicles, cooperative control, and autonomous systems (2004-2005). He was previously an Associate Professor at Idaho State University (1989-1998) and a Professor of Electrical and Computer Engineering at Utah State University, where he was the Director of the Center for Self-Organizing and Intelligent Systems, directing multi-disciplinary research teams of students and professionals developing a variety of autonomous robots for government and commercial applications (1998 -2004). He also worked in industry for three years pre-Ph.D as a member of the technical staff at Hughes Aircraft Company. His general research interests include iterative learning control theory, autonomous systems and robotics, and applications of control to industrial and mechatronic systems. He is the author of the research monograph Iterative Learning Control for Deterministic Systems, published by Springer-Verlag in 1993, and co-author of the book Sensing, Modeling, and Control of Gas Metal Arc Welding, published by Elsevier in 2003. He is a professional engineer, involved in several professional societies and editorial activities, and is interested in engineering education pedagogy. Of particular relevance for the proposed monograph, Dr. Moore has been a seminal contributor and leader in the field of ILC. His early work in the field developed the idea of the supervector approach, and he has studied the problem of monotonic convergence, and he initiated the idea of studying robustness in the iteration domain. He has also been active in organizing ILC workshops, invited sessions on ILC at conferences, and editing special issues of journals. His insights on the ILC problem will directly influence the contents of the proposed monograph. Dr YangQuan Chen is presently an assistant professor of Electrical and Computer Engineering Department and the Acting Director for CSOIS (Center for Self-Organizing and Intelligent Systems, www.csois.usu.edu) at Utah State University. He obtained his Ph.D. from Nanyang Technological University, Singapore in 1998, an MS from Beijing Institute of Technology (BIT) in 1989, and a BS from University of Science and Technology of Beijing (USTB) in 1985. Dr Chen has 12 US patents granted and 2 US patent applications published, most related to the implementation of ILC algorithms, which lends special insight into the ILC application examples found in the mongraph. He has published more than 200 academic papers and (co)authored more than 50 industrial reports. His recent books include Solving Advanced Applied Mathematical Problems Using Matlab (with Dingyu Xue, Tsinghua University Press. August 20

Das könnte Ihnen auch gefallen …