Energy Harvesting for Self-Powered Wearable Devices

Lieferzeit: Lieferbar innerhalb 14 Tagen

117,69 

Analog Circuits and Signal Processing

ISBN: 3319873458
ISBN 13: 9783319873459
Verlag: Springer Verlag GmbH
Umfang: xii, 99 S., 32 s/w Illustr., 57 farbige Illustr., 99 p. 89 illus., 57 illus. in color.
Erscheinungsdatum: 07.08.2018
Weitere Autoren: Alhawari, Mohammad/Mohammad, Baker/Saleh, Hani et al
Auflage: 1/2018
Produktform: Kartoniert
Einband: KT

This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system. Provides a comprehensive overview of the available energy harvesting sources and their usage, model and characteristics; Enables engineers to understand the challenges of using energy harvesting systems and to design proper interface circuits for a particular application; Presents characterization data of humanbody thermal and vibrational energy harvesting, using off the shelf components; Shows stateoftheart power management methods for controlling the power harvested, stored and delivered to the load.

Artikelnummer: 6774646 Kategorie:

Beschreibung

This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system.

Autorenporträt

Mohammad Alhawari received the B.S. degree in electronic engineering from Yarmouk University, Jordan, in 2008 and the M.S. degree in microsystems engineering from Masdar Institute of Science and Technology, Abu Dhabi, in 2012. He received the PhD degree in electrical and computer engineering from Khalifa University of Science, Technology in 2016. From 2008 to 2010, he worked at YOUNIVATE Company in Jordan, as a hardware and PCB engineer. He is currently a post-doctoral research fellow at Khalifa University, where he focuses on low power designs for energy harvesting applications.Baker Mohammad earned his PhD from University of Texas at Austin, his M.S. from Arizona State University, Tempe, and BS from the University of New Mexico, Albuquerque, all in ECE. Dr. Mohammad is currently an associate Professor at the Department of Electrical and Computer Engineering at Khalifa University and a founding and active member of Khalifa University Semiconductor Research Center. He is a Senior Member of the IEEE and serves as an editor to the microelectronics journal, Elsevier. Baker Served in many organization and technical committee for IEEE conferences, In addition, he is a frequent reviewer for many journals including IEEE TVLSI, IEEE Circuits and Systems, and Springer. Baker has extensive experience for attracting and managing research grants including SRC, ADEC, UAE Space Agency and KU internal funding. Prior to joining Khalifa University (KU) Baker has over 16-years industrial experience working for intel and Qualcomm in microprocessor design with emphasis on embedded system, and low power design. His research interest includes power efficient computing, high yield embedded memory, emerging technology such as memristor, STTRAM, computer architecture, and In-Memory-Computing. In addition, he is engaged in micro-watt range computing platform for WSN focusing on energy harvesting and power management including efficient dc/dc, ac/dc convertors. He authored/co-authored over 80 referred journals and conference proceedings, 2 books, 18 US patents, multiple invited seminars/panelist, and the presenter of 3 conference tutorials including one tutorial on Energy harvesting and Power management for WSN at the 2015 International Symposium on Circuits and Systems conference (ISCAS). Dr. Mohammad has received several awards including the KU staff excellence award in intellectual property creation, IEEE TVLSI best paper award, Qualcomm Qstar award for excellence on performance, and leadership. Best paper award for Qtech conference June 2009, and Intel Involve in the community award for volunteer and impact on the community. Hani Saleh is an assistant professor of electronic engineering at Khalifa University since 2012. He is an active member in KSRC (Khalifa University Research Center) where he leads a project for the development of wearable SOC and a mobile surveillance SOC. Hani has a total of 19 years of industrial experience in ASIC chip design, microprocessor design, DSP core design, graphics core design and embedded system design. His experience spans DSP core design, microprocessor peripherals design, microprocessors and graphics core deign. Prior to joining Khalifa University he worked as a Senior Chip Designer (Technical Lead) at Apple incorporation; where he worked on the design and implementation of Apple next generation graphics cores for its mobile products (iPad, iPhone, etc.), prior to joining Apple, he worked for several leading semiconductor companies including Intel (ATOM mobile microprocessor design), AMD (Bobcat mobile microprocessor design), Qualcomm (QDSP DSP core design for mobile SOCs), Synopsys (a key member of Synopsys turnkey design group where he taped out many ASICs and designed the I2C DW IP included in Synopys DesignWare library), Fujitsu (SPARC compatible high performance microprocessor design) a

Das könnte Ihnen auch gefallen …