Generative Adversarial Learning: Architectures and Applications

Lieferzeit: Lieferbar innerhalb 14 Tagen

192,59 

Intelligent Systems Reference Library 217

ISBN: 3030913929
ISBN 13: 9783030913922
Herausgeber: Roozbeh Razavi-Far/Ariel Ruiz-Garcia/Vasile Palade et al
Verlag: Springer Verlag GmbH
Umfang: xiv, 355 S., 13 s/w Illustr., 132 farbige Illustr., 355 p. 145 illus., 132 illus. in color.
Erscheinungsdatum: 09.02.2023
Auflage: 1/2023
Produktform: Kartoniert
Einband: Kartoniert

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs‘ theoretical developments and their applications.

Artikelnummer: 8021626 Kategorie:

Beschreibung

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …