Data Mining: Foundations and Intelligent Paradigms

Lieferzeit: Lieferbar innerhalb 14 Tagen

160,49 

Volume 1: Clustering, Association and Classification, Intelligent Systems Reference Library 23

ISBN: 3642430937
ISBN 13: 9783642430930
Herausgeber: Dawn E Holmes/Lakhmi C Jain
Verlag: Springer Verlag GmbH
Umfang: xvi, 336 S., 102 s/w Illustr., 8 farbige Illustr.
Erscheinungsdatum: 26.01.2014
Auflage: 1/2014
Produktform: Kartoniert
Einband: Kartoniert

Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 1of this three volume series, we have brought together contributions from some of the most prestigious researchers in the fundamental data mining tasks of clustering, association and classification. Each of the chapters is self contained. Theoreticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in these aspects of data mining.

Artikelnummer: 5968238 Kategorie:

Beschreibung

There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled "DATA MINING: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification" we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field. 

Autorenporträt

InhaltsangabeIntroductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …