Computational and Machine Learning Tools for Archaeological Site Modeling

Lieferzeit: Lieferbar innerhalb 14 Tagen

246,09 

Springer Theses

ISBN: 3030885666
ISBN 13: 9783030885663
Autor: Castiello, Maria Elena
Verlag: Springer Verlag GmbH
Umfang: xviii, 296 S., 20 s/w Illustr., 139 farbige Illustr., 296 p. 159 illus., 139 illus. in color.
Erscheinungsdatum: 25.01.2022
Auflage: 1/2022
Format: 2.2 x 24.2 x 13.2
Gewicht: 621 g
Produktform: Gebunden/Hardback
Einband: Gebunden

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Artikelnummer: 2831758 Kategorie:

Beschreibung

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …