Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices

Lieferzeit: Lieferbar innerhalb 14 Tagen

106,99 

Springer Theses

ISBN: 3319258036
ISBN 13: 9783319258034
Autor: Lingnau, Benjamin
Verlag: Springer Verlag GmbH
Umfang: xiii, 193 S., 63 s/w Illustr., 25 farbige Illustr., 193 p. 88 illus., 25 illus. in color.
Erscheinungsdatum: 18.12.2015
Auflage: 1/2016
Produktform: Gebunden/Hardback
Einband: Gebunden

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.

Artikelnummer: 8636528 Kategorie:

Beschreibung

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.

Autorenporträt

Benjamin Lingnau received his B.Sc in physics in 2009 and his M.Sc in 2011 from TU Berlin. He graduated and received the Dr. rer. nat. from TU Berlin in 2015. His scientific interests include nonlinear laser dynamics and dynamics of semiconductor quantum-dot optoelectronic devices. He has authored and co-authored 18 peer-reviewed scientific papers.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …