Developing Synthetic Transport Systems

Lieferzeit: Lieferbar innerhalb 14 Tagen

53,49 

SpringerBriefs in Biochemistry and Molecular Biology 5

ISBN: 9400758928
ISBN 13: 9789400758926
Autor: Melkikh, Alexey/Sutormina, Maria
Verlag: Springer Verlag GmbH
Umfang: vii, 199 S., 19 s/w Illustr., 49 farbige Illustr., 199 p. 68 illus., 49 illus. in color.
Erscheinungsdatum: 02.02.2013
Auflage: 1/2013
Produktform: Kartoniert
Einband: KT
Artikelnummer: 4063915 Kategorie:

Beschreibung

InhaltsangabeIntroduction.- Chapter 1 Biological Cybernetics and the optimization problem of transport of substances in the cells.- 1.1 Methods of optimization and living systems.- 1.1.1 Control theory and biosystems.- 1.1.2 Optimality and living systems.- 1.1.3 Compartmental models of living systems in biological cybernetics.- 1.1.4 Biological cybernetics, synthetic biology and the "minimal cell".- 1.2 Transport of ions through cell membranes - models and methods of optimization.- 1.2.1 Active and passive transport of ions. Resting potential.- 1.2.2 Osmotic pressure of solutions inside and outside the cell.- 1.2.3 Classification of models of ion transport. Two-level model. Algorithm "one ion - one transport system".- 1.2.4 Methods of optimizations and transport of substances.- 1.2.5 Two transport systems for one substance.- 1.2.6 An optimization of the transport system of a cell as a game problem.- References.- Chapter 2 Models of ion transport in mammalian cells.- 2.1Cardiac cells.- 2.1.1 Model of transport systems.- 2.1.2 Regulation of ion transport.- 2.2 Neurons.- 2.2.1 Model of transport systems.- 2.2.2 Model of ion transport with a restriction of deviation from the experimental data.- 2.2.3 Regulation of ion transport.- 2.3 Erythrocytes.- 2.3.1 Model of ion transport.- 2.3.2 The model of regulation of ion transport: efficiency or robustness?- 2.4 Hepatocytes.- 2.4.1 Model for ion transport.- 2.4.2 Regulation of ion transport.- 2.5 Regulation of ion transport in compartments of a mammalian cell.- 2.5.1 Mitochondria.- 2.5.2 Sarcoplasmic and endoplasmic reticulum.- 2.5.3 Synaptic vesicles.- Conclusions.- References.- Chapter 3 Models of ion transport and regulation in plant cells and unicellular organisms.- 3.1 Archaea.- 3.2 Diatomei.- 3.3 E. coli.- 3.3.1 Transport model of basic ions.- 3.3.2 Calculation of the osmotic pressure difference in bacteria.- 3.4 Regulation of ion transport in select microorganisms.- 3.5 Possible regulatory strategies for bacterial transport of heavy metals.- 3.6 Plant cells.- 3.7 Vacuoles.- 3.8 Thylakoids.-  Conclusions.- References.- Chapter  4 Optimization of the transport of substances in cells.- 4.1 Optimization methods used for models of transport subsystems of living and artificial cells.- 4.1.1.- Effectiveness of the energy conversion in the transport of substances through biomembranes.- 4.1.2 Synthesis of the transport system of an artificial cell based on the method of dynamic programming.- 4.1.3 Ideal transport system: simultaneous optimization of robustness and effectiveness.- 4.1.4 Method of the critical point.- 4.1.5 Controllability and paradox of ions transport.- 4.1.6 Cascades and networks of the transport molecular machines.- 4.1.7 Regulation of the pressure in generalized cells. Cells in fresh and distilled water. Transport of water.- 4.1.8 Transport of ions with a lack of energy and diffusion of ATP.- 4.2 Protocells at the early stages of evolution.- 4.2.1 Early stages of evolution and origin of the first cells.- 4.2.2 A model of the simplest transport system in a minimal cell.- 4.2.3 A model of the simplest system for the control of transport processes in a cell.- 4.2.4 Physico-chemical models of cellular movement.- 4.2.5 Sunlight as a possible source of energy for movement.- 4.2.6 The energy balance in protocells.- 4.2.7 The problem of control and reception of information: strategies used by protocells for directed motion. 4.3. The transport of large molecules in living and artificial cells.- Conclusion.- Appendix 1 Methods of optimization.- A1.1 Conditional extremum and nonlinear programming.- A1.2 Linear programming.- A1.3 Integer programming.- A1.4 The packing problem (backpack).- A1.5 Dynamic programming.- A1.6 Matrix games.- Appendix 2 Controllability of linear control systems.- References. Index.

Autorenporträt

InhaltsangabeIntroduction.- Chapter 1 Biological Cybernetics and the optimization problem of transport of substances in the cells.- 1.1 Methods of optimization and living systems.- 1.1.1 Control theory and biosystems.- 1.1.2 Optimality and living systems.- 1.1.3 Compartmental models of living systems in biological cybernetics.- 1.1.4 Biological cybernetics, synthetic biology and the "minimal cell".- 1.2 Transport of ions through cell membranes - models and methods of optimization.- 1.2.1 Active and passive transport of ions. Resting potential.- 1.2.2 Osmotic pressure of solutions inside and outside the cell.- 1.2.3 Classification of models of ion transport. Two-level model. Algorithm "one ion - one transport system".- 1.2.4 Methods of optimizations and transport of substances.- 1.2.5 Two transport systems for one substance.- 1.2.6 An optimization of the transport system of a cell as a game problem.- References.- Chapter 2 Models of ion transport in mammalian cells.- 2.1Cardiac cells.- 2.1.1 Model of transport systems.- 2.1.2 Regulation of ion transport.- 2.2 Neurons.- 2.2.1 Model of transport systems.- 2.2.2 Model of ion transport with a restriction of deviation from the experimental data.- 2.2.3 Regulation of ion transport.- 2.3 Erythrocytes.- 2.3.1 Model of ion transport.- 2.3.2 The model of regulation of ion transport: efficiency or robustness?- 2.4 Hepatocytes.- 2.4.1 Model for ion transport.- 2.4.2 Regulation of ion transport.- 2.5 Regulation of ion transport in compartments of a mammalian cell.- 2.5.1 Mitochondria.- 2.5.2 Sarcoplasmic and endoplasmic reticulum.- 2.5.3 Synaptic vesicles.- Conclusions.- References.- Chapter 3 Models of ion transport and regulation in plant cells and unicellular organisms.- 3.1 Archaea.- 3.2 Diatomei.- 3.3 E. coli.- 3.3.1 Transport model of basic ions.- 3.3.2 Calculation of the osmotic pressure difference in bacteria.- 3.4 Regulation of ion transport in select microorganisms.- 3.5 Possible regulatory strategies for bacterial transport of heavy metals.- 3.6 Plant cells.- 3.7 Vacuoles.- 3.8 Thylakoids.-  Conclusions.- References.- Chapter  4 Optimization of the transport of substances in cells.- 4.1 Optimization methods used for models of transport subsystems of living and artificial cells.- 4.1.1.- Effectiveness of the energy conversion in the transport of substances through biomembranes.- 4.1.2 Synthesis of the transport system of an artificial cell based on the method of dynamic programming.- 4.1.3 Ideal transport system: simultaneous optimization of robustness and effectiveness.- 4.1.4 Method of the critical point.- 4.1.5 Controllability and paradox of ions transport.- 4.1.6 Cascades and networks of the transport molecular machines.- 4.1.7 Regulation of the pressure in generalized cells. Cells in fresh and distilled water. Transport of water.- 4.1.8 Transport of ions with a lack of energy and diffusion of ATP.- 4.2 Protocells at the early stages of evolution.- 4.2.1 Early stages of evolution and origin of the first cells.- 4.2.2 A model of the simplest transport system in a minimal cell.- 4.2.3 A model of the simplest system for the control of transport processes in a cell.- 4.2.4 Physico-chemical models of cellular movement.- 4.2.5 Sunlight as a possible source of energy for movement.- 4.2.6 The energy balance in protocells.- 4.2.7 The problem of control and reception of information: strategies used by protocells for directed motion. 4.3. The transport of large molecules in living and artificial cells.- Conclusion.- Appendix 1 Methods of optimization.- A1.1 Conditional extremum and nonlinear programming.- A1.2 Linear programming.- A1.3 Integer programming.- A1.4 The packing problem (backpack).- A1.5 Dynamic programming.- A1.6 Matrix games.- Appendix 2 Controllability of linear control systems.- References. Index.

Das könnte Ihnen auch gefallen …