Bio-Inspired Information Pathways

Lieferzeit: Lieferbar innerhalb 14 Tagen

42,79 

From Neuroscience to Neurotronics, Springer Series on Bio- and Neurosystems 16

ISBN: 3031367073
ISBN 13: 9783031367076
Herausgeber: Martin Ziegler/Thomas Mussenbrock/Hermann Kohlstedt
Verlag: Springer Verlag GmbH
Umfang: xiii, 433 S., 39 s/w Illustr., 187 farbige Illustr., 433 p. 226 illus., 187 illus. in color.
Erscheinungsdatum: 20.09.2023
Auflage: 1/2024
Produktform: Kartoniert
Einband: Kartoniert

This book is open access, which means that you have free and unlimited accessPresents novel findings relating to neural pathways in various biological systemsDiscusses the latest advances in the fabrication of hybrid bioelectrical interfacesCovers research at the intersection of biology, information processing and engineering

Artikelnummer: 9627067 Kategorie:

Beschreibung

This open access book offers a timely and comprehensive review of the field of neurotronics. Gathering cutting-edge contributions from neuroscientists, biologists, psychologists, as well as physicists, microelectronics engineers and information scientists, it gives extensive information on fundamental information pathways in selected nervous systems. It also highlights their relevance as building blocks for novel computing architectures, such as bio-inspired electronic devices, neuromorphic architectures, memristive devices, adaptive sensors and emergent, pulsed-coupled oscillatory networks. All in all, this book offers a unique bridge between fundamental research in neuroscience, neural information processing, nonlinear dynamics, and self-organization, and advanced practical applications concerning the fabrication of hardware-oriented computing.

Autorenporträt

Martin Ziegler is a full professor and the Chair of Micro- and Nanoelectronic Systems at the Faculty of Electrical Engineering and Information Technology of the Technische Universität Ilmenau, Germany. He works in the field of neuromorphic engineering. His main research interests concern the transfer of biological learning and memory into electronic systems. For this purpose, he studies and applies memristive materials and devices, micro-electromechanical systems, and neuromorphic circuits. Thomas Mussenbrock is a full professor and the Chair of Applied Electrodynamics and Plasma Technology in the Faculty of Electrical Engineering and Information Technology at Ruhr University Bochum, Germany. His primary research interests cover modeling and simulation of low-temperature plasmas and plasma processes. Further topics include transport phenomena at the nanoscale and nanoionic devices. Hermann Kohlstedt is a full professor of Nanoelectronics at Kiel University, Germany. His research concerns the development of novel electronics device and computing primitives based on biological fundamentals. His topics span from thin film analytics, device fabrication and their electrical characterization.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …