Statistical Learning Theory and Stochastic Optimization

Lieferzeit: Lieferbar innerhalb 14 Tagen

53,49 

Ecole d’Ete de Probabilites de Saint-Flour XXXI – 2001 – Lecture Notes in Mathematics, Volume 1851, Lecture Notes in Mathematics 1851 – École d’Été de Probabilités de Saint-Flour

ISBN: 3540225722
ISBN 13: 9783540225720
Autor: Catoni, Olivier
Herausgeber: Jean Picard
Verlag: Springer Verlag GmbH
Umfang: viii, 284 S.
Erscheinungsdatum: 25.08.2004
Produktform: Kartoniert
Einband: Kartoniert

Beschreibung

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …