Modeling Over-dispersed Binary Outcome Data

Lieferzeit: Lieferbar innerhalb 14 Tagen

35,90 

ISBN: 3330067624
ISBN 13: 9783330067622
Autor: Olaniyi, Babaniyi
Verlag: LAP LAMBERT Academic Publishing
Umfang: 80 S.
Erscheinungsdatum: 29.04.2017
Auflage: 1/2017
Format: 0.5 x 22 x 15
Gewicht: 137 g
Produktform: Kartoniert
Einband: Kartoniert

Beschreibung

Many a time data admit more variability than expected under the assumed distribution. The greater variability than predicted by the generalized linear model random component reflects overdispersion. Overdispersion occurs because the mean and variance components of a GLM are related and depends on the same parameter that is being predicted through the independent vector. In the context of logistic regression, overdispersion occurs when the discrepancies between the observed responses and their predicted values are larger than what the binomial model would predict. The problem of overdispersion may also be confounded with the problem of omitted covariates. If overdispersion is present in a data set, the estimated standard errors and test statistics the overall goodness-of-fit will be distorted and adjustments must be made and the interpretation of the model will be incorrect and any predictions will be too imprecise. In this book, we applied Quasilikelihood techniques (Scaling), William's procedure, Generalized Estimating Equation (GEE) to real-life datasets and proved it overcome the problem of overdispersion. We employed the free statistical software R version 3.1.

Autorenporträt

Babaniyi .Y. Olaniyi was born in Lagos, Nigeria. He received the B.Sc. degree with First Class Honors from the Department of Statistics and Mathematical Sciences from Kwara State University, Nigeria, in 2016. He graduated as the best student and he is currently interested in Machine Learning, Deep learning and Artificial Intelligence.

Herstellerkennzeichnung:


BoD - Books on Demand
In de Tarpen 42
22848 Norderstedt
DE

E-Mail: info@bod.de

Das könnte Ihnen auch gefallen …