Brownian Motion and its Applications to Mathematical Analysis

Lieferzeit: Lieferbar innerhalb 14 Tagen

53,49 

École d’Été de Probabilités de Saint-Flour XLIII – 2013, Lecture Notes in Mathematics 2106 – École d’Été de Probabilités de Saint-Flour

ISBN: 3319043935
ISBN 13: 9783319043937
Autor: Burdzy, Krzysztof
Verlag: Springer Verlag GmbH
Umfang: xii, 137 S., 12 s/w Illustr., 4 farbige Illustr., 137 p. 16 illus., 4 illus. in color.
Erscheinungsdatum: 20.02.2014
Auflage: 1/2014
Produktform: Kartoniert
Einband: Kartoniert

These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in „deterministic“ fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.

Beschreibung

These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics.The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …