Geometric Control Theory and Sub-Riemannian Geometry

Lieferzeit: Lieferbar innerhalb 14 Tagen

106,99 

Springer INdAM Series 5

ISBN: 3319350250
ISBN 13: 9783319350257
Herausgeber: Gianna Stefani/Ugo Boscain/Jean-Paul Gauthier et al
Verlag: Springer Verlag GmbH
Umfang: xii, 384 S., 55 s/w Illustr., 49 farbige Illustr., 384 p. 104 illus., 49 illus. in color.
Erscheinungsdatum: 27.08.2016
Auflage: 1/2014
Produktform: Kartoniert
Einband: Kartoniert

This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

Artikelnummer: 9785777 Kategorie:

Beschreibung

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Autorenporträt

Prof. Gianna Stefani: From 1997 is Full Professor at University of Florence, Italy.Prof. Ugo Boscain: Directeur de recherche CNRS (DR2) at the Center of Applied Mathematics and Probability (CMAP) of Ecole Polytechnique; Professeur charge de course in numerical analysis and optimization at Ecole Polytechnique (department of applied mathematics); Deputy team leader of the equipe-INRIA GECO Inria Saclay. Prof. Jean-Paul Gauthier: Experience of JP Gauthier In Scientific Research (January 2011), Including; Research Team Management and Industrial Collaborations; JP Gauthier has scientific experience in several areas (pluridisciplinary); Honorary Member of Institut Universitaire de France (Promotion 1992). Prof. Andrey Sarychev: Full Professor (Professore Ordinario di I Fascia) at the Department of Mathematics and Informatics U.Dini (DiMaI), University of Florence, Italy, since January 2013. Prof. Mario Sigalotti: Chargé de recherche de première classe (CR1) - Établissement: INRIA Saclay - Île-de-France - Équipe-projet: GECO.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …