Differential- und Integralrechnung II

Lieferzeit: Lieferbar innerhalb 14 Tagen

49,99 

Differentialrechnung in mehreren Veränderlichen Differentialgleichungen, Heidelberger Taschenbücher 36

ISBN: 3540086978
ISBN 13: 9783540086970
Autor: Grauert, H/Fischer, W
Verlag: Springer Verlag GmbH
Umfang: xii, 230 S.
Erscheinungsdatum: 01.04.1978
Gewicht: 281 g
Produktform: Kartoniert
Einband: Kartoniert
Artikelnummer: 188700 Kategorie:

Beschreibung

differenzierbar, wenn es eine in Xo stetige Abbildung x -+ ,1. £ von U in den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt. Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines separierten topologischen Vektorraumes E ist und die Werte von f in einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F) der stetigen linearen Ab­ bildungen von E in F mit einer Pseudotopologie zu versehen 1: Man betrachtet z. B. genau die Filter £ auf Hom (E, F) als gegen 0 kon­ vergent, die folgende Eigenschaft haben: Fur jeden Filter ~ auf Emit m· ~ -+ 0 gilt £ (~) -+ 0 in F. Dabei ist m der Filter der Nullumge­ bungen in JR, m· ~ wird von den N A mit N E m und A E ~ erzeugt, £ (~) von den L (A) = u A. (A) mit L E £ und A E~. Man kann nun die Differenzierbarkeit ~~~au wie oben definieren, nur ist unter x -+ ,1x jetzt eine in Xo stetige Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche Abbildung Hom(E,F)XE-+F stetig ist, ist ,1xo eindeutig bestimmt und kann als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel.

Herstellerkennzeichnung:


Springer Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
DE

E-Mail: juergen.hartmann@springer.com

Das könnte Ihnen auch gefallen …