Catalysis in Asymmetric Synthesis

Lieferzeit: Nicht mehr lieferbar

71,90 

Postgraduate Chemistry Series

ISBN: 1405175192
ISBN 13: 9781405175197
Autor: Caprio, Vittorio/Williams, Jonathan
Verlag: Wiley-VCH GmbH
Umfang: 408 S.
Erscheinungsdatum: 02.01.2009
Auflage: 2/2009
Produktform: Kartoniert
Einband: KT

Controlling the stereochemical outcome of reactions in the synthesis of complex natural products or bioactive materials represents a considerable intellectual and practical challenge for chemists. The stereochemical features of these products are usually essential to their bioactivity, so asymmetric synthesis has become a dominant feature of modern organic chemistry. Asymmetric catalysis is an important aspect of asymmetric synthesis, and one that has seen significant progress in the development of widely applicable methodology. This book is written from the point of view of the synthetic organic chemist, illustrating the transformations that can be achieved via this methodology, rather than the organometallic chemistry that lies behind. The emphasis is on non-enzymatic methods of asymmetric catalysis, although key references to enzyme-catalysed reactions have been incorporated where appropriate. The book is extensively referenced and therefore provides a convenient point of entry to the primary literature for both experienced synthetic organic chemists and advanced students alike.

Nicht vorrätig

Artikelnummer: 1822794 Kategorie:

Beschreibung

Asymmetric synthesis has become a major aspect of modern organic chemistry. The stereochemical properties of an organic compound are often essential to its bioactivity, and the need for stereochemically pure pharmaceutical products is a key example of the importance of stereochemical control in organic synthesis. However, achieving high levels of stereoselectivity in the synthesis of complex natural products represents a considerable intellectual and practical challenge for chemists. Written from a synthetic organic chemistry perspective, this text provides a practical overview of the field, illustrating a wide range of transformations that can be achieved. The book captures the latest advances in asymmetric catalysis with emphasis placed on non-enzymatic methods. Topics covered include: * Reduction of alkenes, ketones and imines * Nucleophilic addition to carbonyl compounds * Catalytic carbon-carbon bond forming reactions * Catalytic reactions involving metal carbenoids * Conjugate addition reactions Catalysis in Asymmetric Synthesis bridges the gap between undergraduate and advanced level textbooks and provides a convenient point of entry to the primary literature for the experienced synthetic organic chemist.

Inhaltsverzeichnis

Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 1.1 Reactions Amenable to Asymmetric Catalysis. 1.2 Assignment of (R) and (S) Stereochemical Descriptors. Futher Reading. References. 2 Reduction of Alkenes. 2.1 Asymmetric Hydrogenation with Rhodium Complexes. 2.2 Asymmetric Hydrogenation with Ruthenium Catalysts. 2.3 Alkene Hydrogenation with Titanium and Zirconium Catalysts. 2.4 Alkene Hydrogenation with Iridium Catalysts. 2.5 Alkene Hydrogenation with Organocatalysts. 2.6 Alkene Hydrosilylation. 2.7 Alkene Hydroboration. 2.8 Hydroamination. 2.9 Hydroformylation. 2.10 Hydroacylation of Alkenes. 2.11 Hydrocyanation of Alkenes. References. 3 Reduction of Ketones and Imines. 3.1 Hydrogenation of Ketones. 3.2 Hydrogenation and Transfer Hydrogenation of Imines and Related Compounds. 3.3 Transfer Hydrogenation of Ketones. 3.4 Heterogeneous Hydrogenation. 3.5 Reduction of Ketones Using Enantioselective Borohydride Reagents. 3.6 Hydrosilylation of Ketones. 3.7 Hydrosilylation of Imines and Nitrones. References. 4 Epoxidation. 4.1 Epoxidation of Allylic Alcohols. 4.2 Epoxidation with Metal(salen) Complexes. 4.3 Epoxidation Using Metal-Porphyrin-Based Catalysts. 4.4 OtherMetal-Catalysed Epoxidations of Unfunctionalised Olefins. 4.5 Epoxidation of Electron-Deficient Alkenes. 4.6 Epoxidation with Iminium Salts. 4.7 Epoxidation with Ketone Catalysts. 4.8 Epoxidation of Aldehydes. 4.9 Aziridination of Alkenes. 4.10 Aziridination of Imines. References. 5 Further Oxidation Reactions. 5.1 Dihydroxylation. 5.2 Aminohydroxylation. 5.3 ±-Heterofunctionalisation of Aldehydes and Ketones. 5.4 Oxidation of C-H. 5.5 Baeyer-Villiger Oxidation. 5.6 Oxidation of Sulfides. References. 6 Nucleophilic Addition to Carbonyl Compounds. 6.1 Addition of Organozincs to Carbonyl Compounds. 6.2 Addition of Cyanide to Aldehydes and Ketones. 6.3 Allylation of Aldehydes. 6.4 Hydrophosphonylation of Aldehydes. 6.5 Nucleophilic Additions to Imines. References. 7 The Aldol and Related Reactions. 7.1 The Aldol Reaction. 7.2 Isocyanide and Related Aldol Reactions. 7.3 The Nitroaldol Reaction. 7.4 Addition of Enolates to Imines. 7.5 Darzens Condensation. 7.6 Morita-Baylis-Hillman Reaction. 7.7 Carbonyl-Ene Reactions. References. 8 Cycloadditions. 8.1 Diels-Alder Reactions. 8.2 Inverse Electron Demand Diels-Alder Reactions. 8.3 Hetero-Diels-Alder Reactions. 8.4 1,3-Dipolar Cycloaddition Reactions. 8.5 [2+2] Cycloadditions. 8.6 Pauson-Khand-Type Reactions. References. 9 Catalytic Reactions Involving Carbenes and Ylides. 9.1 Cyclopropanation. 9.2 Insertion Reactions. 9.3 Asymmetric Ylide Reactions. References. 10 Catalytic Carbon-Carbon Bond-Forming Reactions. 10.1 Cross-Coupling Reactions. 10.2 Metal-Catalysed Allylic Substitution. 10.3 Heck Reactions. 10.4 Alkylmetalation of Alkenes. References. 11 Conjugate Addition Reactions. 11.1 Conjugate Addition of Enolates. 11.2 Conjugate Addition of Sulfur Nucleophiles. 11.3 Conjugate Addition of Nonstabilised Nucleophiles. 11.4 Conjugate Addition with Nitrogen-Based Nucleophiles and Electrophiles. References. 12 Further Catalytic Reactions. 12.1 Isomerisations and Rearrangements. 12.2 Deprotonation Reactions. 12.3 Protonation Reactions. 12.4 Alkylation and Allylation of Enolates. 12.5 Formation of Alkenes. 12.6 Oxyselenylation-El ...

Autorenporträt

InhaltsangabePreface to the Second Edition. Preface to the First Edition. 1 Introduction. 1.1 Reactions Amenable to Asymmetric Catalysis. 1.2 Assignment of (R) and (S) Stereochemical Descriptors. Futher Reading. References. 2 Reduction of Alkenes. 2.1 Asymmetric Hydrogenation with Rhodium Complexes. 2.2 Asymmetric Hydrogenation with Ruthenium Catalysts. 2.3 Alkene Hydrogenation with Titanium and Zirconium Catalysts. 2.4 Alkene Hydrogenation with Iridium Catalysts. 2.5 Alkene Hydrogenation with Organocatalysts. 2.6 Alkene Hydrosilylation. 2.7 Alkene Hydroboration. 2.8 Hydroamination. 2.9 Hydroformylation. 2.10 Hydroacylation of Alkenes. 2.11 Hydrocyanation of Alkenes. References. 3 Reduction of Ketones and Imines. 3.1 Hydrogenation of Ketones. 3.2 Hydrogenation and Transfer Hydrogenation of Imines and Related Compounds. 3.3 Transfer Hydrogenation of Ketones. 3.4 Heterogeneous Hydrogenation. 3.5 Reduction of Ketones Using Enantioselective Borohydride Reagents. 3.6 Hydrosilylation of Ketones. 3.7 Hydrosilylation of Imines and Nitrones. References. 4 Epoxidation. 4.1 Epoxidation of Allylic Alcohols. 4.2 Epoxidation with Metal(salen) Complexes. 4.3 Epoxidation Using Metal-Porphyrin-Based Catalysts. 4.4 OtherMetal-Catalysed Epoxidations of Unfunctionalised Olefins. 4.5 Epoxidation of Electron-Deficient Alkenes. 4.6 Epoxidation with Iminium Salts. 4.7 Epoxidation with Ketone Catalysts. 4.8 Epoxidation of Aldehydes. 4.9 Aziridination of Alkenes. 4.10 Aziridination of Imines. References. 5 Further Oxidation Reactions. 5.1 Dihydroxylation. 5.2 Aminohydroxylation. 5.3 ±Heterofunctionalisation of Aldehydes and Ketones. 5.4 Oxidation of C-H. 5.5 BaeyerVilliger Oxidation. 5.6 Oxidation of Sulfides. References. 6 Nucleophilic Addition to Carbonyl Compounds. 6.1 Addition of Organozincs to Carbonyl Compounds. 6.2 Addition of Cyanide to Aldehydes and Ketones. 6.3 Allylation of Aldehydes. 6.4 Hydrophosphonylation of Aldehydes. 6.5 Nucleophilic Additions to Imines. References. 7 The Aldol and Related Reactions. 7.1 The Aldol Reaction. 7.2 Isocyanide and Related Aldol Reactions. 7.3 The Nitroaldol Reaction. 7.4 Addition of Enolates to Imines. 7.5 Darzens Condensation. 7.6 MoritaBaylisHillman Reaction. 7.7 CarbonylEne Reactions. References. 8 Cycloadditions. 8.1 DielsAlder Reactions. 8.2 Inverse Electron Demand Diels-Alder Reactions. 8.3 HeteroDielsAlder Reactions. 8.4 1,3Dipolar Cycloaddition Reactions. 8.5 [2+2] Cycloadditions. 8.6 PausonKhandType Reactions. References. 9 Catalytic Reactions Involving Carbenes and Ylides. 9.1 Cyclopropanation. 9.2 Insertion Reactions. 9.3 Asymmetric Ylide Reactions. References. 10 Catalytic Carbon-Carbon Bond-Forming Reactions. 10.1 CrossCoupling Reactions. 10.2 MetalCatalysed Allylic Substitution. 10.3 Heck Reactions. 10.4 Alkylmetalation of Alkenes. References. 11 Conjugate Addition Reactions. 11.1 Conjugate Addition of Enolates. 11.2 Conjugate Addition of Sulfur Nucleophiles. 11.3 Conjugate Addition of Nonstabilised Nucleophiles. 11.4 Conjugate Addition with Nitrogen-Based Nucleophiles and Electrophiles. References. 12 Further Catalytic Reactions. 12.1 Isomerisations and Rearrangements. 12.2 Deprotonation Reactions. 12.3 Protonation Reactions. 12.4 Alkylation and Allylation of Enolates. 12.5 Formation of Alkenes. 12.6 Oxyselenylation-Elimination Reactions. 12.7 The Benzoin Condensation. 12.8 Ester Formation and Hydrolysis. 12.9 RingOpening of Epoxides. References. Index.

Das könnte Ihnen auch gefallen …