Mechanical Properties of Materials at Low Temperatures

Lieferzeit: Lieferbar innerhalb 14 Tagen

53,49 

The International Cryogenics Monograph Series

ISBN: 1468418890
ISBN 13: 9781468418897
Autor: Wigley, D
Verlag: Springer Verlag GmbH
Umfang: xiv, 326 S., 25 s/w Illustr., 326 p. 25 illus.
Erscheinungsdatum: 12.06.2012
Auflage: 1/1971
Produktform: Kartoniert
Einband: KT

Inhaltsangabe1 Deformation Processes in Pure Metals.- 1.1. Glossary of Terms Relevant to the Tensile Test.- 1.2. Elastic Deformation.- 1.3. General Aspects of Plastic Deformation in Metals.- 1.3.1. Microplasticity.- 1.3.2. The Generic Tensile Stress-Strain Curve for Single Crystals.- 1.3.3. Yield and Plastic Deformation in Polycrystals.- 1.4. The Effect of Temperature on the Yield and Flow of Pure Face-Centered-Cubic Metals.- 1.4.1. Single Crystals.- 1.4.2. Polycrystals.- 1.4.3. Dislocation Structures.- 1.4.4. Engineering Parameters.- 1.5. The Effect of Temperature on the Yield and Flow of Pure Body-Centered-Cubic Metals.- 1.5.1. Single Crystals.- 1.5.2. Polycrystals.- 1.5.3. Dislocation Structures.- 1.5.4. Engineering Parameters.- 1.6. The Effect of Temperature on the Yield and Flow of Pure Hexagonal-Close-Packed Metals.- 1.6.1. Single Crystals.- 1.6.2. Polycrystals.- 1.6.3. Dislocation Structures.- 1.6.4. Engineering Parameters.- 1.7. A Comparison of the Main Characteristics of Face-Centered-Cubic, Body-Centered-Cubic, and Hexagonal-Close-Packed Metals.- 1.8. Plastic Deformation at Constant Stress: Creep.- 1.9. Annealing: Recovery and Recrystallization.- References.- 2 Deformation Processes in Impure Metals and Alloys.- 2.1. Yield and Flow in Solution-Hardened Single-Phase Alloys.- 2.1.1. Dislocation-Solute Interactions.- 2.1.2. The Effect of Solutes on the Yield Stress.- 2.1.3. The Effect of Solutes on Strain Hardening.- 2.1.4. Single-Phase, Solution-Hardened Alloys Used in Cryogenic Applications.- 2.1.5. Alloy Stabilized High-Temperature Phases.- 2.2. Yield and Flow in Precipitation-Hardened Alloys.- 2.2.1. Simple Binary Alloys.- 2.2.2. Precipitation-hardened Alloys Used in Cryogenic Applications.- 2.3. Yield and Flow in Two-Phase Alloys.- 2.3.1. Soft, Ductile Second Phases.- 2.3.2. Hard, Ductile Second Phases.- 2.3.3. Soft, Brittle Second Phases.- 2.3.4. Hard, Brittle Second Phases.- 2.4. Yield Drops and Serrated Stress-Strain Curves.- 2.4.1. Yield Drops.- 2.4.2. Serrated Stress-Strain Curves.- Note Added in Proof.- References.- 3 Fracture.- 3.1. Basic Mechanisms of Ductile and Brittle Failure.- 3.1.1. Ductile Fracture.- 3.1.2. Brittle Fracture.- 3.2. Crack Propagation: Fracture Toughness.- 3.2.1. The Energy Balance Approach.- 3.2.2. The Fracture Mechanics Approach.- 3.2.3. Measurement of Fracture Toughness.- 3.2.4. The Relationship between Strength and Toughness in Metals.- 3.2.5. Applied Fracture Mechanics.- 3.2.6. The Effect of Temperature on Fracture Toughness.- 3.3. The Ductile-Brittle Transition in Ferrous Metals.- 3.3.1. The Basic Problem.- 3.3.2. Transition Temperatures in Ferrous Alloys.- 3.3.3. Testing for Resistance to Brittle Failure.- 3.4. Time-Dependent Failure.- 3.4.1. Fatigue.- 3.4.2. Corrosion and Embrittlement.- References.- 4 The Properties of Nonmetals.- 4.1. Polymers.- 4.1.1. The Relationship between the Structure and Mechanical Properties of Polymers.- 4.1.2. Polymeric Materials of Particular Interest for Cryogenic Applications.- 4.2. Ceramics and Glasses.- 4.3. Composites.- 4.3.1. Basic Theory.- 4.3.2. Cryogenic Properties of Composites.- References.- 5 Testing Methods and Techniques.- 5.1. Basic Types of Cryostat and Cooling System.- 5.2. Modifications, Variations, and Special-Purpose Attachments.- 5.2.1. Multiple-Specimen Testing.- 5.2.2. Compression Testing.- 5.2.3. Flexural, Torsional, and Other Tests.- 5.2.4. Fatigue Testing.- 5.2.5. Impact Testing.- 5.3. Extensometry.- 5.3.1. Resistive Strain Gauges.- 5.3.2. Displacement Transducers.- 5.3.3. Capacitance Gauges.- References.- 6 Design and Materials Selection Criteria.- 6.1. Compatibility.- 6.1.1. Compatibility with Liquid Oxygen and Other Process Fluids.- 6.1.2. Compatibility with the External Environment.- 6.2. Toughness.- 6.2.1. The Basic Problem.- 6.2.2. Codes of Practice for Pressure-Containing Equipment.- 6.2.3. Some Economic Implications of Designing to Pressure Vessel Codes.- 6.3. Practicability.- 6.3.1. Availability of Materials.- 6.3.2. Availabilit

Artikelnummer: 6590434 Kategorie:

Beschreibung

In writing this monograph, the aim has been to consider the mechanical properties of the wide range of materials now available in such a way as to start with the fundamental nature of these properties and to follow the discussion through to the point at which the reader is able to comprehend the significance or otherwise of the large amounts of data now available in design manuals and other compilations. In short, it is hoped that this volume will be used as a companion to these data compilations and as an aid to their interpretation. In attempting to cover such a wide field, a large degree of selection has been necessary, as complete volumes have been written on topics which here have had to be covered in a few pages or less. It is inevitable that not everyone will agree with the choice made, especially if it is his own subject which has been discussed rather briefly, and the author accepts full res ponsibility for the selection made. The book is written at a level which should be easily followed by a university graduate in science or engineer ing, although, if his background has not included a course in materials science, some groundwork may be lacking.

Autorenporträt

Inhaltsangabe1 Deformation Processes in Pure Metals.- 1.1. Glossary of Terms Relevant to the Tensile Test.- 1.2. Elastic Deformation.- 1.3. General Aspects of Plastic Deformation in Metals.- 1.3.1. Microplasticity.- 1.3.2. The Generic Tensile Stress-Strain Curve for Single Crystals.- 1.3.3. Yield and Plastic Deformation in Polycrystals.- 1.4. The Effect of Temperature on the Yield and Flow of Pure Face-Centered-Cubic Metals.- 1.4.1. Single Crystals.- 1.4.2. Polycrystals.- 1.4.3. Dislocation Structures.- 1.4.4. Engineering Parameters.- 1.5. The Effect of Temperature on the Yield and Flow of Pure Body-Centered-Cubic Metals.- 1.5.1. Single Crystals.- 1.5.2. Polycrystals.- 1.5.3. Dislocation Structures.- 1.5.4. Engineering Parameters.- 1.6. The Effect of Temperature on the Yield and Flow of Pure Hexagonal-Close-Packed Metals.- 1.6.1. Single Crystals.- 1.6.2. Polycrystals.- 1.6.3. Dislocation Structures.- 1.6.4. Engineering Parameters.- 1.7. A Comparison of the Main Characteristics of Face-Centered-Cubic, Body-Centered-Cubic, and Hexagonal-Close-Packed Metals.- 1.8. Plastic Deformation at Constant Stress: Creep.- 1.9. Annealing: Recovery and Recrystallization.- References.- 2 Deformation Processes in Impure Metals and Alloys.- 2.1. Yield and Flow in Solution-Hardened Single-Phase Alloys.- 2.1.1. Dislocation-Solute Interactions.- 2.1.2. The Effect of Solutes on the Yield Stress.- 2.1.3. The Effect of Solutes on Strain Hardening.- 2.1.4. Single-Phase, Solution-Hardened Alloys Used in Cryogenic Applications.- 2.1.5. Alloy Stabilized High-Temperature Phases.- 2.2. Yield and Flow in Precipitation-Hardened Alloys.- 2.2.1. Simple Binary Alloys.- 2.2.2. Precipitation-hardened Alloys Used in Cryogenic Applications.- 2.3. Yield and Flow in Two-Phase Alloys.- 2.3.1. Soft, Ductile Second Phases.- 2.3.2. Hard, Ductile Second Phases.- 2.3.3. Soft, Brittle Second Phases.- 2.3.4. Hard, Brittle Second Phases.- 2.4. Yield Drops and Serrated Stress-Strain Curves.- 2.4.1. Yield Drops.- 2.4.2. Serrated Stress-Strain Curves.- Note Added in Proof.- References.- 3 Fracture.- 3.1. Basic Mechanisms of Ductile and Brittle Failure.- 3.1.1. Ductile Fracture.- 3.1.2. Brittle Fracture.- 3.2. Crack Propagation: Fracture Toughness.- 3.2.1. The Energy Balance Approach.- 3.2.2. The Fracture Mechanics Approach.- 3.2.3. Measurement of Fracture Toughness.- 3.2.4. The Relationship between Strength and Toughness in Metals.- 3.2.5. Applied Fracture Mechanics.- 3.2.6. The Effect of Temperature on Fracture Toughness.- 3.3. The Ductile-Brittle Transition in Ferrous Metals.- 3.3.1. The Basic Problem.- 3.3.2. Transition Temperatures in Ferrous Alloys.- 3.3.3. Testing for Resistance to Brittle Failure.- 3.4. Time-Dependent Failure.- 3.4.1. Fatigue.- 3.4.2. Corrosion and Embrittlement.- References.- 4 The Properties of Nonmetals.- 4.1. Polymers.- 4.1.1. The Relationship between the Structure and Mechanical Properties of Polymers.- 4.1.2. Polymeric Materials of Particular Interest for Cryogenic Applications.- 4.2. Ceramics and Glasses.- 4.3. Composites.- 4.3.1. Basic Theory.- 4.3.2. Cryogenic Properties of Composites.- References.- 5 Testing Methods and Techniques.- 5.1. Basic Types of Cryostat and Cooling System.- 5.2. Modifications, Variations, and Special-Purpose Attachments.- 5.2.1. Multiple-Specimen Testing.- 5.2.2. Compression Testing.- 5.2.3. Flexural, Torsional, and Other Tests.- 5.2.4. Fatigue Testing.- 5.2.5. Impact Testing.- 5.3. Extensometry.- 5.3.1. Resistive Strain Gauges.- 5.3.2. Displacement Transducers.- 5.3.3. Capacitance Gauges.- References.- 6 Design and Materials Selection Criteria.- 6.1. Compatibility.- 6.1.1. Compatibility with Liquid Oxygen and Other Process Fluids.- 6.1.2. Compatibility with the External Environment.- 6.2. Toughness.- 6.2.1. The Basic Problem.- 6.2.2. Codes of Practice for Pressure-Containing Equipment.- 6.2.3. Some Economic Implications of Designing to Pressure Vessel Codes.- 6.3. Practicability.- 6.3.1. Availability of Materials.- 6.3.2. Availabilit

Das könnte Ihnen auch gefallen …