Bestellmengenplanung basierend auf Wagner/Whitin und Spieltheorie

Lieferzeit: Lieferbar innerhalb 14 Tagen

15,99 

ISBN: 3656698031
ISBN 13: 9783656698036
Autor: Lönnecke, Gerald
Verlag: GRIN Verlag
Umfang: 44 S.
Erscheinungsdatum: 13.08.2014
Auflage: 1/2014
Format: 0.4 x 21 x 14.8
Gewicht: 79 g
Produktform: Kartoniert
Einband: KT
Artikelnummer: 7083512 Kategorie:

Beschreibung

Studienarbeit aus dem Jahr 2014 im Fachbereich BWL - Beschaffung, Produktion, Logistik, Note: 1,3, FernUniversität Hagen (Center for Production and Decision Support), Veranstaltung: Entscheidungen in der Produktionswirtschaft, Sprache: Deutsch, Abstract: Im Unternehmensalltag gewinnen neben vertikalen Kooperationen auch horizontale Beschaffungskooperationen zunehmend an Bedeutung. Durch das Auftreten von Unternehmen als Kooperation, können Kosten eingespart werden. Gleiches gilt in zunehmendem Maße auch für öffentliche Einrichtungen (vgl. Drechsel und Kimms 2010, S. 313). Hieraus erwächst die Frage, wie die hieraus entstehenden Koalitionsgewinne so auf die Beteiligten verteilt werden können, dass die Koalition stabil bleibt und darüber hinaus der Gewinnanteil als fair empfunden wird (vgl. Sackmann und Rittmann 2012, S. 240-241). In der Literatur finden sich Verfahren, die unter einfachen Annahmen eine solche Allokation direkt berechnen können. Für komplexe Problemstellungen der Bestellmengenplanung ist bekannt, dass stabile Allokationen exitieren. Jedoch fehlt ein effizientes Verfahren zur Ermittlung dieser Allokationen. Die vorliegende Arbeit soll ein algorithmisches Verfahren zur Lösung von kooperativen Bestellmengenproblemen, auf Basis des Wagner-Whitin-Verfahrens vorstellen, dass sowohl stabile, als auch faire Allokationen von Koalitionsgewinnen bzw. Einsparungen gewährleisten kann. Im folgenden Kapitel 2 erfolgt die Einordnung der Thematik in die bestehende Literatur. Hierbei werden verschiedene Ansätze zur kooperativen Bestellmengenplanung vorgestellt. Kapitel 3 beginnt mit einer kurzen formalen Beschreibung des Kerns und setzt mit einer Darstellung des Wagner-Whitin-Problems und einer Anpassung für den N-Spieler-Fall fort. Anschließend erfolgt die Darstellung eines Algorithmus zur Berechnung von Kernelementen und die Anwendung auf das Wagner-Whitin-Problem. Abschließend wird eine Betrachtung der ökonomischen Bedeutung vorgenommen und ein Ausblick auf mögliche Erweiterungen gegeben.

Das könnte Ihnen auch gefallen …