Laser Refractography

Lieferzeit: Lieferbar innerhalb 14 Tagen

106,99 

ISBN: 1441973966
ISBN 13: 9781441973962
Autor: Rinkevichyus, B S/Evtikhieva, O A/Raskovskaya, I L
Verlag: Springer Verlag GmbH
Umfang: xiv, 189 S.
Erscheinungsdatum: 24.11.2010
Auflage: 1/2011
Produktform: Gebunden/Hardback
Einband: GEB

This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest to students and researchers who need to characterize complex fluid behavior.

Artikelnummer: 1258474 Kategorie:

Beschreibung

This monograph is devoted to the description of the physical fundamentals of laser refractography-a novel informational-measuring technique for the diagnostics of optically inhomogeneous media and flows, based on the idea of using spatially structured probe laser radiation in combination with its digital recording and c- puter techniques for the differential processing of refraction patterns. Considered are the physical fundamentals of this technique, actual optical schemes, methods of processing refraction patterns, and possible applications. This informational technique can be employed in such areas of science and technology as require remote nonperturbative monitoring of optical, thermophysical, chemical, aerohydrodynamic, and manufacturing processes. The monograph can also be recommended for students and postgraduates of - formational, laser, electro-optical, thermophysical, chemical, and other specialties. Laser refractography is a conceptually novel refraction method for the diagn- tics of inhomogeneous media, based on the idea of using spatially structured probe laser radiation in combination with its digital recording and computer techniques for the differential processing of refraction patterns.

Inhaltsverzeichnis

Preface.- Introduction.- Structured Laser Radiation.- Physical Causes of Optical Inhomogeneity.- Refraction of Laser Beams in Inhomogeneous Media.- Refraction of SLR in a Spherical Inhomogeneity.- Laser Refractography Systems.- Digital Recording and Processing for Refractography.- Quantitative Diagnosis of Inhomogeneities.- Conclusion.- Quiz.- Index.

Autorenporträt

Bronyus Simovich Rinkevichyus graduated from Moscow Power Engineering Institute with a degree in applied physical optics in 1965, defended his candidate's thesis in electronics at Moscow Power Engineering Institute in 1969, defended his doctoral thesis in optics at P.I. Lebedev Physical Institute of the Russian Academy of Sciences in 1980, Full Professor at V.A. Fabrikant Chair of Physics of Moscow Power Engineering Institute (Technical University), Doctor of Physics and Mathematics Science, author and co-author of over 300 scientific papers, 3 monographs, and 5 books published in the Russian and English languages, Member (affiliate) of IEEE,Full Member of D.S. Rozhdestvensky Optical Society, Full Member of the International Academy of Sciences of Higher School. The main fields of his scientific interests are coherent and informational optics, physical fundamentals of the laser diagnostics of flows, and history of science. Olga Anatolyevna Evtikhieva graduated from Moscow Power Engineering Institute with a degree in optoelectronic instruments in 1975, defended her candidate's thesis at Moscow Power Engineering Institute in 1980, Head of V.A. Fabrikant Chair of Physics of Moscow Power Engineering Institute (Technical University), Candidate of Technical Sciences, author and co-author of over 80 scientific papers and 4 books. The main fields of her scientific interest are applied and informational optics and laser refractometry. Irina Lvovna Raskovskaya graduated from Moscow Power Engineering Institute with a degree in radio physics in 1981, graduated from Moscow State University with a degree in theoretical physics in 1990, defended her candidate's thesis at Moscow State Technical University Stankin in 2005, Senior Researcher at V.A. Fabrikant Chair of Physics of Moscow Power Engineering Institute (Technical University), Candidate of Physics and Mathematics science, author and co-author of over 50 scientific papers. The main fields of her scientific interests are propagation of radio and optical waves in inhomogeneous media and laser measuring systems.

Das könnte Ihnen auch gefallen …