From Signals to Image

Lieferzeit: Lieferbar innerhalb 14 Tagen

96,29 

A Basic Course on Medical Imaging for Engineers

ISBN: 3030353281
ISBN 13: 9783030353285
Verlag: Springer Verlag GmbH
Umfang: xiv, 474 S., 112 s/w Illustr., 226 farbige Illustr., 474 p. 338 illus., 226 illus. in color.
Erscheinungsdatum: 30.05.2021
Weitere Autoren: Azhari, Haim/Kennedy, John A/Weiss, Noam et al
Auflage: 1/2020
Produktform: Kartoniert
Einband: KT

This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as: physics of X-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and PET imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and for flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting. – Teaches the basic principles of medical imaging needed for understanding and conducting research and development in the field Emphasizes practical calculations for the design and evaluation of medical imaging devices Contains exemplary exercises, homework problems, and sample exam questions

Artikelnummer: 2366304 Kategorie:

Beschreibung

This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.

Autorenporträt

Haim Azhari is an Associate Professor in the Department of Biomedical Engineering, Technion, Israel Institute of Technology in Haifa, Israel. John A. Kennedy is Chief Physicist in the Department of Nuclear Medicine, Rambam Health Care Campus in Haifa, Israel and is Adjunct Lecturer, Faculty of Biomedical Engineering, Technion, Israel Institute of Technology. Lana Volokh is a medical imaging and image reconstruction professional, and an expert in nuclear medicine and hybrid imaging systems and image quality assessment. Noam Weiss, PhD, is a medical physicist researcher and an expert in X-Ray CT technology and medical image processing. She is also an adjunct lecturer at the Faculty of Biomedical Engineering, Technion, Israel Institute of Technology.

Das könnte Ihnen auch gefallen …